Extensions 1→N→G→Q→1 with N=C2xDic7 and Q=C23

Direct product G=NxQ with N=C2xDic7 and Q=C23
dρLabelID
C24xDic7448C2^4xDic7448,1383

Semidirect products G=N:Q with N=C2xDic7 and Q=C23
extensionφ:Q→Out NdρLabelID
(C2xDic7):1C23 = C2xC22:D28φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7):1C2^3448,940
(C2xDic7):2C23 = D7xC22wrC2φ: C23/C2C22 ⊆ Out C2xDic756(C2xDic7):2C2^3448,1041
(C2xDic7):3C23 = C2xC23:D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7):3C2^3448,1252
(C2xDic7):4C23 = C2xC24:D7φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7):4C2^3448,1293
(C2xDic7):5C23 = C2xD4:6D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7):5C2^3448,1371
(C2xDic7):6C23 = D7x2+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7568+(C2xDic7):6C2^3448,1379
(C2xDic7):7C23 = C2xD7xC22:C4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7):7C2^3448,937
(C2xDic7):8C23 = C22xD14:C4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7):8C2^3448,1240
(C2xDic7):9C23 = C22xC23.D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7):9C2^3448,1292
(C2xDic7):10C23 = C22xD4xD7φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7):10C2^3448,1369
(C2xDic7):11C23 = C22xD4:2D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7):11C2^3448,1370
(C2xDic7):12C23 = C2xD7xC4oD4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7):12C2^3448,1375
(C2xDic7):13C23 = C23xC7:D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7):13C2^3448,1384
(C2xDic7):14C23 = D7xC23xC4φ: trivial image224(C2xDic7):14C2^3448,1366

Non-split extensions G=N.Q with N=C2xDic7 and Q=C23
extensionφ:Q→Out NdρLabelID
(C2xDic7).1C23 = C2xC28:2Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).1C2^3448,921
(C2xDic7).2C23 = C2xC28.6Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).2C2^3448,922
(C2xDic7).3C23 = C42.274D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).3C2^3448,923
(C2xDic7).4C23 = C2xC4.D28φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).4C2^3448,929
(C2xDic7).5C23 = C42.276D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).5C2^3448,930
(C2xDic7).6C23 = C2xC42:2D7φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).6C2^3448,931
(C2xDic7).7C23 = C42.277D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).7C2^3448,932
(C2xDic7).8C23 = C23:2Dic14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).8C2^3448,936
(C2xDic7).9C23 = C2xC22.D28φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).9C2^3448,945
(C2xDic7).10C23 = C23:3D28φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).10C2^3448,946
(C2xDic7).11C23 = C24.30D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).11C2^3448,947
(C2xDic7).12C23 = C24.31D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).12C2^3448,948
(C2xDic7).13C23 = C2xC28:Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).13C2^3448,950
(C2xDic7).14C23 = C14.72+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).14C2^3448,953
(C2xDic7).15C23 = C2xD14:2Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).15C2^3448,962
(C2xDic7).16C23 = C14.2+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).16C2^3448,963
(C2xDic7).17C23 = C2xC4:C4:D7φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).17C2^3448,965
(C2xDic7).18C23 = C14.52- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).18C2^3448,966
(C2xDic7).19C23 = C14.112+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).19C2^3448,967
(C2xDic7).20C23 = C14.62- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).20C2^3448,968
(C2xDic7).21C23 = C42.89D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).21C2^3448,971
(C2xDic7).22C23 = C42.90D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).22C2^3448,972
(C2xDic7).23C23 = C42:9D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).23C2^3448,978
(C2xDic7).24C23 = C42.92D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).24C2^3448,979
(C2xDic7).25C23 = C42.93D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).25C2^3448,981
(C2xDic7).26C23 = C42.94D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).26C2^3448,982
(C2xDic7).27C23 = C42.95D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).27C2^3448,983
(C2xDic7).28C23 = C42.96D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).28C2^3448,984
(C2xDic7).29C23 = C42.97D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).29C2^3448,985
(C2xDic7).30C23 = C42.98D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).30C2^3448,986
(C2xDic7).31C23 = C42.99D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).31C2^3448,987
(C2xDic7).32C23 = C42.100D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).32C2^3448,988
(C2xDic7).33C23 = D4:5Dic14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).33C2^3448,992
(C2xDic7).34C23 = C42.104D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).34C2^3448,993
(C2xDic7).35C23 = C42.105D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).35C2^3448,994
(C2xDic7).36C23 = C42.106D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).36C2^3448,995
(C2xDic7).37C23 = D4:6Dic14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).37C2^3448,996
(C2xDic7).38C23 = C42:12D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).38C2^3448,1000
(C2xDic7).39C23 = D4xD28φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).39C2^3448,1002
(C2xDic7).40C23 = D28:23D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).40C2^3448,1003
(C2xDic7).41C23 = D28:24D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).41C2^3448,1004
(C2xDic7).42C23 = D4:5D28φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).42C2^3448,1007
(C2xDic7).43C23 = C42.113D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).43C2^3448,1011
(C2xDic7).44C23 = C42.114D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).44C2^3448,1012
(C2xDic7).45C23 = C42:17D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).45C2^3448,1013
(C2xDic7).46C23 = C42.115D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).46C2^3448,1014
(C2xDic7).47C23 = C42.116D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).47C2^3448,1015
(C2xDic7).48C23 = C42.118D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).48C2^3448,1017
(C2xDic7).49C23 = C42.119D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).49C2^3448,1018
(C2xDic7).50C23 = Dic14:10Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).50C2^3448,1020
(C2xDic7).51C23 = Q8:5Dic14φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).51C2^3448,1022
(C2xDic7).52C23 = Q8:6Dic14φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).52C2^3448,1023
(C2xDic7).53C23 = Q8xD28φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).53C2^3448,1028
(C2xDic7).54C23 = Q8:5D28φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).54C2^3448,1029
(C2xDic7).55C23 = D28:10Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).55C2^3448,1032
(C2xDic7).56C23 = C42.132D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).56C2^3448,1034
(C2xDic7).57C23 = C42.133D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).57C2^3448,1035
(C2xDic7).58C23 = C42.134D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).58C2^3448,1036
(C2xDic7).59C23 = C42.136D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).59C2^3448,1038
(C2xDic7).60C23 = C24:2D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).60C2^3448,1042
(C2xDic7).61C23 = C24.34D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).61C2^3448,1045
(C2xDic7).62C23 = C24.35D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).62C2^3448,1046
(C2xDic7).63C23 = C24:4D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).63C2^3448,1047
(C2xDic7).64C23 = C24.36D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).64C2^3448,1048
(C2xDic7).65C23 = Dic14:19D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).65C2^3448,1051
(C2xDic7).66C23 = C14.342+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).66C2^3448,1054
(C2xDic7).67C23 = C14.352+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).67C2^3448,1055
(C2xDic7).68C23 = C14.712- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).68C2^3448,1056
(C2xDic7).69C23 = D7xC4:D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).69C2^3448,1057
(C2xDic7).70C23 = C14.372+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).70C2^3448,1058
(C2xDic7).71C23 = C4:C4:21D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).71C2^3448,1059
(C2xDic7).72C23 = C14.382+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).72C2^3448,1060
(C2xDic7).73C23 = C14.722- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).73C2^3448,1061
(C2xDic7).74C23 = C14.402+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).74C2^3448,1063
(C2xDic7).75C23 = D28:20D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).75C2^3448,1065
(C2xDic7).76C23 = C14.422+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).76C2^3448,1066
(C2xDic7).77C23 = C14.432+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).77C2^3448,1067
(C2xDic7).78C23 = C14.442+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).78C2^3448,1068
(C2xDic7).79C23 = C14.452+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).79C2^3448,1069
(C2xDic7).80C23 = C14.472+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).80C2^3448,1072
(C2xDic7).81C23 = C14.482+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).81C2^3448,1073
(C2xDic7).82C23 = C14.492+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).82C2^3448,1074
(C2xDic7).83C23 = (Q8xDic7):C2φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).83C2^3448,1075
(C2xDic7).84C23 = C14.152- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).84C2^3448,1078
(C2xDic7).85C23 = D7xC22:Q8φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).85C2^3448,1079
(C2xDic7).86C23 = C4:C4:26D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).86C2^3448,1080
(C2xDic7).87C23 = C14.162- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).87C2^3448,1081
(C2xDic7).88C23 = C14.172- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).88C2^3448,1082
(C2xDic7).89C23 = C14.512+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).89C2^3448,1087
(C2xDic7).90C23 = C14.1182+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).90C2^3448,1088
(C2xDic7).91C23 = C14.522+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).91C2^3448,1089
(C2xDic7).92C23 = C14.532+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).92C2^3448,1090
(C2xDic7).93C23 = C14.212- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).93C2^3448,1092
(C2xDic7).94C23 = C14.242- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).94C2^3448,1096
(C2xDic7).95C23 = C14.572+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).95C2^3448,1098
(C2xDic7).96C23 = C14.582+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).96C2^3448,1099
(C2xDic7).97C23 = C14.262- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).97C2^3448,1100
(C2xDic7).98C23 = C4:C4.197D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).98C2^3448,1102
(C2xDic7).99C23 = C14.802- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).99C2^3448,1103
(C2xDic7).100C23 = C14.602+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).100C2^3448,1104
(C2xDic7).101C23 = C14.1202+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).101C2^3448,1106
(C2xDic7).102C23 = C14.1212+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).102C2^3448,1107
(C2xDic7).103C23 = C14.822- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).103C2^3448,1108
(C2xDic7).104C23 = C4:C4:28D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).104C2^3448,1109
(C2xDic7).105C23 = C14.622+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).105C2^3448,1112
(C2xDic7).106C23 = C14.832- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).106C2^3448,1113
(C2xDic7).107C23 = C14.842- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).107C2^3448,1115
(C2xDic7).108C23 = C14.852- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).108C2^3448,1118
(C2xDic7).109C23 = C14.682+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).109C2^3448,1119
(C2xDic7).110C23 = C14.862- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).110C2^3448,1120
(C2xDic7).111C23 = C42.140D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).111C2^3448,1125
(C2xDic7).112C23 = D7xC4.4D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).112C2^3448,1126
(C2xDic7).113C23 = C42:18D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).113C2^3448,1127
(C2xDic7).114C23 = C42.141D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).114C2^3448,1128
(C2xDic7).115C23 = D28:10D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).115C2^3448,1129
(C2xDic7).116C23 = C42.144D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).116C2^3448,1135
(C2xDic7).117C23 = C42:22D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).117C2^3448,1136
(C2xDic7).118C23 = C42.145D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).118C2^3448,1137
(C2xDic7).119C23 = Dic14:7Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).119C2^3448,1138
(C2xDic7).120C23 = C42.147D14φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).120C2^3448,1139
(C2xDic7).121C23 = C42.148D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).121C2^3448,1142
(C2xDic7).122C23 = D28:7Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).122C2^3448,1143
(C2xDic7).123C23 = C42.152D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).123C2^3448,1147
(C2xDic7).124C23 = C42.153D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).124C2^3448,1148
(C2xDic7).125C23 = C42.157D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).125C2^3448,1152
(C2xDic7).126C23 = C42.158D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).126C2^3448,1153
(C2xDic7).127C23 = C42.159D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).127C2^3448,1154
(C2xDic7).128C23 = D7xC42:2C2φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).128C2^3448,1156
(C2xDic7).129C23 = C42:24D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).129C2^3448,1158
(C2xDic7).130C23 = C42.162D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).130C2^3448,1161
(C2xDic7).131C23 = C42:25D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).131C2^3448,1164
(C2xDic7).132C23 = C42.165D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).132C2^3448,1165
(C2xDic7).133C23 = C42.166D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).133C2^3448,1166
(C2xDic7).134C23 = C42:26D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).134C2^3448,1168
(C2xDic7).135C23 = C42.238D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).135C2^3448,1169
(C2xDic7).136C23 = D28:11D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).136C2^3448,1170
(C2xDic7).137C23 = C42.168D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).137C2^3448,1172
(C2xDic7).138C23 = C42:28D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).138C2^3448,1173
(C2xDic7).139C23 = D7xC4:Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).139C2^3448,1176
(C2xDic7).140C23 = C42.171D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).140C2^3448,1177
(C2xDic7).141C23 = D28:12D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).141C2^3448,1179
(C2xDic7).142C23 = D28:8Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).142C2^3448,1180
(C2xDic7).143C23 = C42.241D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).143C2^3448,1181
(C2xDic7).144C23 = C42.174D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).144C2^3448,1182
(C2xDic7).145C23 = D28:9Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).145C2^3448,1183
(C2xDic7).146C23 = C42.177D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).146C2^3448,1185
(C2xDic7).147C23 = C42.180D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).147C2^3448,1188
(C2xDic7).148C23 = C2xC28.48D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).148C2^3448,1237
(C2xDic7).149C23 = C2xC23.23D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).149C2^3448,1242
(C2xDic7).150C23 = C2xC28:7D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).150C2^3448,1243
(C2xDic7).151C23 = C24.72D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).151C2^3448,1244
(C2xDic7).152C23 = C2xC28:2D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).152C2^3448,1253
(C2xDic7).153C23 = D4xC7:D4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).153C2^3448,1254
(C2xDic7).154C23 = C24:7D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).154C2^3448,1257
(C2xDic7).155C23 = C24.41D14φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).155C2^3448,1258
(C2xDic7).156C23 = C2xDic7:Q8φ: C23/C2C22 ⊆ Out C2xDic7448(C2xDic7).156C2^3448,1263
(C2xDic7).157C23 = C2xD14:3Q8φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).157C2^3448,1266
(C2xDic7).158C23 = Q8xC7:D4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).158C2^3448,1268
(C2xDic7).159C23 = C14.442- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).159C2^3448,1269
(C2xDic7).160C23 = C14.1042- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).160C2^3448,1277
(C2xDic7).161C23 = C14.1052- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).161C2^3448,1278
(C2xDic7).162C23 = C14.1452+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).162C2^3448,1282
(C2xDic7).163C23 = C14.1462+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7112(C2xDic7).163C2^3448,1283
(C2xDic7).164C23 = C14.1072- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).164C2^3448,1284
(C2xDic7).165C23 = C14.1082- 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).165C2^3448,1286
(C2xDic7).166C23 = C14.1482+ 1+4φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).166C2^3448,1287
(C2xDic7).167C23 = C2xD4.10D14φ: C23/C2C22 ⊆ Out C2xDic7224(C2xDic7).167C2^3448,1377
(C2xDic7).168C23 = C14.C25φ: C23/C2C22 ⊆ Out C2xDic71124(C2xDic7).168C2^3448,1378
(C2xDic7).169C23 = D14.C24φ: C23/C2C22 ⊆ Out C2xDic71128-(C2xDic7).169C2^3448,1380
(C2xDic7).170C23 = D7x2- 1+4φ: C23/C2C22 ⊆ Out C2xDic71128-(C2xDic7).170C2^3448,1381
(C2xDic7).171C23 = C2xC4xDic14φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).171C2^3448,920
(C2xDic7).172C23 = C2xC42:D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).172C2^3448,925
(C2xDic7).173C23 = C2xC4xD28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).173C2^3448,926
(C2xDic7).174C23 = C4xC4oD28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).174C2^3448,927
(C2xDic7).175C23 = C2xC22:Dic14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).175C2^3448,934
(C2xDic7).176C23 = C2xC23.D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).176C2^3448,935
(C2xDic7).177C23 = C24.24D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).177C2^3448,939
(C2xDic7).178C23 = C2xD14.D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).178C2^3448,941
(C2xDic7).179C23 = C2xD14:D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).179C2^3448,942
(C2xDic7).180C23 = C24.27D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).180C2^3448,943
(C2xDic7).181C23 = C2xDic7.D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).181C2^3448,944
(C2xDic7).182C23 = C2xDic7.Q8φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).182C2^3448,951
(C2xDic7).183C23 = C2xC28.3Q8φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).183C2^3448,952
(C2xDic7).184C23 = C2xD7xC4:C4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).184C2^3448,954
(C2xDic7).185C23 = C2xC4:C4:7D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).185C2^3448,955
(C2xDic7).186C23 = C14.82+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).186C2^3448,957
(C2xDic7).187C23 = C2xD14.5D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).187C2^3448,958
(C2xDic7).188C23 = C2xC4:D28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).188C2^3448,959
(C2xDic7).189C23 = C14.2- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).189C2^3448,960
(C2xDic7).190C23 = C2xD14:Q8φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).190C2^3448,961
(C2xDic7).191C23 = C14.102+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).191C2^3448,964
(C2xDic7).192C23 = C42.87D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).192C2^3448,969
(C2xDic7).193C23 = C42.88D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).193C2^3448,970
(C2xDic7).194C23 = D7xC42:C2φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).194C2^3448,973
(C2xDic7).195C23 = C42:7D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).195C2^3448,974
(C2xDic7).196C23 = C42.91D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).196C2^3448,976
(C2xDic7).197C23 = C42:8D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).197C2^3448,977
(C2xDic7).198C23 = C42:10D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).198C2^3448,980
(C2xDic7).199C23 = D4xDic14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).199C2^3448,990
(C2xDic7).200C23 = C42.102D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).200C2^3448,991
(C2xDic7).201C23 = C42:11D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).201C2^3448,998
(C2xDic7).202C23 = C42.108D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).202C2^3448,999
(C2xDic7).203C23 = C42.228D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).203C2^3448,1001
(C2xDic7).204C23 = Dic14:23D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).204C2^3448,1005
(C2xDic7).205C23 = Dic14:24D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).205C2^3448,1006
(C2xDic7).206C23 = D4:6D28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).206C2^3448,1008
(C2xDic7).207C23 = C42:16D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).207C2^3448,1009
(C2xDic7).208C23 = C42.229D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).208C2^3448,1010
(C2xDic7).209C23 = C42.117D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).209C2^3448,1016
(C2xDic7).210C23 = Q8xDic14φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).210C2^3448,1019
(C2xDic7).211C23 = C42.122D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).211C2^3448,1021
(C2xDic7).212C23 = C42.125D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).212C2^3448,1025
(C2xDic7).213C23 = C4xQ8:2D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).213C2^3448,1026
(C2xDic7).214C23 = C42.126D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).214C2^3448,1027
(C2xDic7).215C23 = Q8:6D28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).215C2^3448,1030
(C2xDic7).216C23 = C42.232D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).216C2^3448,1031
(C2xDic7).217C23 = C42.131D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).217C2^3448,1033
(C2xDic7).218C23 = C42.135D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).218C2^3448,1037
(C2xDic7).219C23 = C24.56D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).219C2^3448,1039
(C2xDic7).220C23 = C24.32D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).220C2^3448,1040
(C2xDic7).221C23 = C24:3D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).221C2^3448,1043
(C2xDic7).222C23 = C24.33D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).222C2^3448,1044
(C2xDic7).223C23 = C28:(C4oD4)φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).223C2^3448,1049
(C2xDic7).224C23 = C14.682- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).224C2^3448,1050
(C2xDic7).225C23 = Dic14:20D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).225C2^3448,1052
(C2xDic7).226C23 = C4:C4.178D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).226C2^3448,1053
(C2xDic7).227C23 = D28:19D4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).227C2^3448,1062
(C2xDic7).228C23 = C14.732- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).228C2^3448,1064
(C2xDic7).229C23 = C14.462+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).229C2^3448,1070
(C2xDic7).230C23 = C14.1152+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).230C2^3448,1071
(C2xDic7).231C23 = C14.752- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).231C2^3448,1076
(C2xDic7).232C23 = C22:Q8:25D7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).232C2^3448,1077
(C2xDic7).233C23 = D28:21D4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).233C2^3448,1083
(C2xDic7).234C23 = D28:22D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).234C2^3448,1084
(C2xDic7).235C23 = Dic14:21D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).235C2^3448,1085
(C2xDic7).236C23 = Dic14:22D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).236C2^3448,1086
(C2xDic7).237C23 = C14.202- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).237C2^3448,1091
(C2xDic7).238C23 = C14.222- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).238C2^3448,1093
(C2xDic7).239C23 = C14.232- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).239C2^3448,1094
(C2xDic7).240C23 = C14.772- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).240C2^3448,1095
(C2xDic7).241C23 = C14.562+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).241C2^3448,1097
(C2xDic7).242C23 = C14.792- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).242C2^3448,1101
(C2xDic7).243C23 = D7xC22.D4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).243C2^3448,1105
(C2xDic7).244C23 = C14.612+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).244C2^3448,1110
(C2xDic7).245C23 = C14.1222+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).245C2^3448,1111
(C2xDic7).246C23 = C14.642+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).246C2^3448,1114
(C2xDic7).247C23 = C14.662+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).247C2^3448,1116
(C2xDic7).248C23 = C14.672+ 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).248C2^3448,1117
(C2xDic7).249C23 = C42.233D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).249C2^3448,1121
(C2xDic7).250C23 = C42.137D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).250C2^3448,1122
(C2xDic7).251C23 = C42.138D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).251C2^3448,1123
(C2xDic7).252C23 = C42.139D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).252C2^3448,1124
(C2xDic7).253C23 = Dic14:10D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).253C2^3448,1130
(C2xDic7).254C23 = C42:20D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).254C2^3448,1131
(C2xDic7).255C23 = C42:21D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).255C2^3448,1132
(C2xDic7).256C23 = C42.143D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).256C2^3448,1134
(C2xDic7).257C23 = D7xC42.C2φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).257C2^3448,1140
(C2xDic7).258C23 = C42.150D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).258C2^3448,1145
(C2xDic7).259C23 = C42.151D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).259C2^3448,1146
(C2xDic7).260C23 = C42.154D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).260C2^3448,1149
(C2xDic7).261C23 = C42.155D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).261C2^3448,1150
(C2xDic7).262C23 = C42.156D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).262C2^3448,1151
(C2xDic7).263C23 = C42.160D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).263C2^3448,1155
(C2xDic7).264C23 = C42:23D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).264C2^3448,1157
(C2xDic7).265C23 = C42.161D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).265C2^3448,1160
(C2xDic7).266C23 = C42.163D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).266C2^3448,1162
(C2xDic7).267C23 = C42.164D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).267C2^3448,1163
(C2xDic7).268C23 = D7xC4:1D4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).268C2^3448,1167
(C2xDic7).269C23 = Dic14:11D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).269C2^3448,1171
(C2xDic7).270C23 = Dic14:8Q8φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).270C2^3448,1174
(C2xDic7).271C23 = Dic14:9Q8φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).271C2^3448,1175
(C2xDic7).272C23 = C42.240D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).272C2^3448,1178
(C2xDic7).273C23 = C42.176D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).273C2^3448,1184
(C2xDic7).274C23 = C42.178D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).274C2^3448,1186
(C2xDic7).275C23 = C42.179D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).275C2^3448,1187
(C2xDic7).276C23 = C22xDic7:C4φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).276C2^3448,1236
(C2xDic7).277C23 = C22xC4:Dic7φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).277C2^3448,1238
(C2xDic7).278C23 = C2xC23.21D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).278C2^3448,1239
(C2xDic7).279C23 = C2xC4xC7:D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).279C2^3448,1241
(C2xDic7).280C23 = C2xD4xDic7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).280C2^3448,1248
(C2xDic7).281C23 = C2xC23.18D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).281C2^3448,1249
(C2xDic7).282C23 = C2xC28.17D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).282C2^3448,1250
(C2xDic7).283C23 = C24.38D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).283C2^3448,1251
(C2xDic7).284C23 = C2xDic7:D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).284C2^3448,1255
(C2xDic7).285C23 = C2xC28:D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).285C2^3448,1256
(C2xDic7).286C23 = C24.42D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).286C2^3448,1259
(C2xDic7).287C23 = C2xQ8xDic7φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).287C2^3448,1264
(C2xDic7).288C23 = C14.422- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).288C2^3448,1265
(C2xDic7).289C23 = C2xC28.23D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).289C2^3448,1267
(C2xDic7).290C23 = C14.452- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).290C2^3448,1270
(C2xDic7).291C23 = C4oD4xDic7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).291C2^3448,1279
(C2xDic7).292C23 = C14.1062- 1+4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).292C2^3448,1280
(C2xDic7).293C23 = (C2xC28):15D4φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).293C2^3448,1281
(C2xDic7).294C23 = (C2xC28):17D4φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).294C2^3448,1285
(C2xDic7).295C23 = C23xDic14φ: C23/C22C2 ⊆ Out C2xDic7448(C2xDic7).295C2^3448,1365
(C2xDic7).296C23 = C22xC4oD28φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).296C2^3448,1368
(C2xDic7).297C23 = C22xQ8xD7φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).297C2^3448,1372
(C2xDic7).298C23 = C2xQ8.10D14φ: C23/C22C2 ⊆ Out C2xDic7224(C2xDic7).298C2^3448,1374
(C2xDic7).299C23 = C2xD4:8D14φ: C23/C22C2 ⊆ Out C2xDic7112(C2xDic7).299C2^3448,1376
(C2xDic7).300C23 = D28.39C23φ: C23/C22C2 ⊆ Out C2xDic71128+(C2xDic7).300C2^3448,1382
(C2xDic7).301C23 = D7xC2xC42φ: trivial image224(C2xDic7).301C2^3448,924
(C2xDic7).302C23 = C2xC23.11D14φ: trivial image224(C2xDic7).302C2^3448,933
(C2xDic7).303C23 = C2xDic7:4D4φ: trivial image224(C2xDic7).303C2^3448,938
(C2xDic7).304C23 = C2xDic7:3Q8φ: trivial image448(C2xDic7).304C2^3448,949
(C2xDic7).305C23 = C2xD28:C4φ: trivial image224(C2xDic7).305C2^3448,956
(C2xDic7).306C23 = C42.188D14φ: trivial image224(C2xDic7).306C2^3448,975
(C2xDic7).307C23 = C4xD4:2D7φ: trivial image224(C2xDic7).307C2^3448,989
(C2xDic7).308C23 = C4xD4xD7φ: trivial image112(C2xDic7).308C2^3448,997
(C2xDic7).309C23 = C4xQ8xD7φ: trivial image224(C2xDic7).309C2^3448,1024
(C2xDic7).310C23 = C42.234D14φ: trivial image224(C2xDic7).310C2^3448,1133
(C2xDic7).311C23 = C42.236D14φ: trivial image224(C2xDic7).311C2^3448,1141
(C2xDic7).312C23 = C42.237D14φ: trivial image224(C2xDic7).312C2^3448,1144
(C2xDic7).313C23 = C42.189D14φ: trivial image224(C2xDic7).313C2^3448,1159
(C2xDic7).314C23 = C22xC4xDic7φ: trivial image448(C2xDic7).314C2^3448,1235
(C2xDic7).315C23 = C22xQ8:2D7φ: trivial image224(C2xDic7).315C2^3448,1373

׿
x
:
Z
F
o
wr
Q
<